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The domino effect is an important problem for the checkpointing and rollback re-

covery in distributed systems. Communication-induced checkpointing is one way of 
preventing domino effect. Most existing such protocols focus on guaranteeing that every 
checkpoint is part of a consistent global checkpoint. This may induce high run-time 
overhead due to the possibly excessive number of extra forced checkpoints. In this paper, 
we propose several adaptive communication-induced checkpointing protocols with 
domino-effect freedom. These protocols allow a flexible tradeoff between the cost of 
checkpoint coordination and the rollback distance. Only a specific set of checkpoints 
needs to be part of a consistent global checkpoint. The overhead analysis shows that our 
generalization can significantly reduce the number of extra forced checkpoints. 
 
Keywords: distributed systems, domino effect, communication-induced checkpointing, 
fault tolerance, rollback recovery 
 
 

1. INTRODUCTION 
 

A distributed computation consists of a finite set of processes that communicate and 
synchronize with each other by exchanging messages through a network. A local check-
point is a snapshot of the local state of a process, saved on nonvolatile storage in order to 
survive process failures. It can be reloaded into volatile memory in case of a failure to 
reduce the amount of lost work. When a process records such a local state, we say that 
this process takes a (local) checkpoint. The set of messages and the set of local check-
points form the checkpoint and communication pattern associated with the distributed 
computation. A global checkpoint M [1] is a set of local checkpoints, one from each 
process; M is consistent if no message is sent after a checkpoint in M and received before 
another checkpoint in M [2]. 

If local checkpoints are taken independently, there is a risk that no consistent global 
checkpoint can be formed from them. This is the problem known as the domino effect [3], 
in which unbounded, cascading rollback propagation can occur during the process of 
finding a consistent global checkpoint. Many protocols have been proposed to selectively 
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take local checkpoints to eliminate possibility of the domino effect (see [4]). Coordinated 
checkpointing [2, 5] is one way of avoiding the domino effect by synchronizing the 
checkpointing actions of all processes through explicit control messages. In contrast, 
communication-induced checkpointing protocols [6] achieve coordination by piggy-
backing control information on application messages. In addition to taking application 
-specific basic checkpoints, each process can also be asked by the protocol to take addi-
tional forced checkpoints, based on the piggybacked information as well as local control 
variables. 

Most communication-induced checkpointing protocols proposed in the literature 
[7-13] are designed to add forced checkpoints to ensure that every checkpoint can be part 
of a consistent global checkpoint. However, this scenario may induce high run-time 
overhead due to the possibility of an excessive number of extra checkpoints. In many 
applications, it is not necessary to guarantee that no cascading rollback will occur. Par-
ticularly, in case of a failure a recovery that will not lead to cascading rollback beyond a 
certain extent is acceptable. Hence we do not need to make every checkpoint be part of a 
consistent global checkpoint. It is sufficient to consider only a specific set of checkpoints. 
In [14], Wang and Fuchs first generalized the concept of checkpoint coordination by in-
troducing the notion of laziness Z as a measure of the frequency for performing coordi-
nation. Only corresponding checkpoints with ordinal numbers nZ, where n is an integer, 
are required to be consistent with each other for bounding rollback propagation. Over-
head analysis showed that their generalization can significantly reduce the number of 
extra forced checkpoints compared to a previous work [7], which corresponds to the case 
Z = 1. 

The contribution of this paper is to introduce a general adaptive communication- 
induced checkpointing protocol with domino-effect freedom. Such a protocol provides a 
flexible tradeoff between cost of checkpoint coordination and rollback distance. Similar 
to the concept of lazy checkpoint coordination [14], only the last checkpoint of a process 
with timestamp not larger than nK, where n is an integer and K is a measure of the fre-
quency for performing coordination, are required to be part of a consistent global check-
point. Moreover, the proposed protocol can define a family of adaptive checkpointing 
protocols with domino-effect freedom. If we eliminate some of its control information, 
the general protocol gives rise to some particular protocols. The protocol proposed in [14] 
can also be obtained as a special case. Actually, these protocols differ only in the condi-
tions of directing processes to take forced checkpoints. Last but not least, we show by 
overhead analysis that the idea of adaptive checkpoint coordination is viable for signifi-
cantly reducing the number of forced checkpoints compared to the previous works [7-9], 
that correspond to the case K = 1. 

This paper is divided into five main sections. Section 2 defines the computational 
model and describes definitions of Z-paths and Z-cycles. In section 3, we begin to design 
the general adaptive checkpointing protocol. In section 4, we show how to implement 
such a general protocol and also derive a family of checkpointing protocols from it. Sec-
tion 5 gives some analyses for this family of checkpointing protocols and related work in 
the literature. Finally, we conclude the paper in section 6. 
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2. PRELIMINARIES 

2.1 Checkpoint and Communication Patterns 

A distributed computation consists of a finite set P of N processes {P1, P2, …, PN} 
which communicate and synchronize only by exchanging messages. We assume that 
each pair of processes is connected by a reliable, asynchronous channel with unpredict-
able but finite transmission delays. Processes fail according to the fail-stop model. 

A process can execute internal, send and receive statements. An internal statement 
does not involve any communication. When Pi executes the statement “send(m) to Pj”, it 
puts message m into the channel from Pi to Pj. When Pi executes the statement “re-
ceive(m)”, it is blocked until at least one message directed to Pi has arrived, after which a 
message is delivered to Pi. Executions of internal, send and receive statements are mod-
eled by internal, sending and receiving events, respectively. 

The execution of each process produces a sequence of events, and all the events 
produced by a distributed computation can be modeled as a partially ordered set with the 
well-known Lamport’s happened-before relation “ hb

���
”, defined as follows [15]:  

 
Definition 1  The relation “ hb

���
” on the set of events satisfies the following conditions:  

 
(1) If a and b are events of the same process and a comes before b, then a hb

���

b.  
(2) If a is the event send(m) and b is the event receive(m), then a hb

���
b.  

(3) If a hb
���

b and b hb
���

c then a hb
���

c. 
 
Given a distributed computation H, its associated checkpoint and communication 

pattern consists of the set of messages and the set of local checkpoints in H. Fig. 1 shows 
an example checkpoint and communication pattern. Ci,x represents the xth checkpoint of 
process Pi, where i is called the process id and x, the index of this checkpoint. The se-
quence of events occurring at Pi between Ci,x−1 and Ci,x (x > 0) is called a checkpoint in-
terval and is denoted by Ii,x. Each process Pi is assumed to start its execution with an ini-
tial checkpoint Ci,0. 

A message m sent by process Pi to process Pj is called orphan with respect to the 
ordered pair of local checkpoints (Ci,x, Cj,y) if and only if the receiving event of m occurs 
before Cj,y but its sending event occurs after Ci,x. An ordered pair of local checkpoints is 
consistent iff there are no orphan messages with respect to this pair. For example, Fig. 1 
shows that the pair (Ci,1, Cj,1) is consistent, while the pair (Cj,2, Ck,1) is inconsistent due to 
the orphan message m5.  

A global checkpoint is a set of local checkpoints, one from each process. Moreover, 
a global checkpoint is consistent iff all its pairs of local checkpoints are consistent. Fig. 1 
shows that (Ci,1, Cj,2, Ck,2) is a consistent global checkpoint, and because of the inconsis-
tent pair (Cj,2, Ck,1), the global checkpoint (Ci,1, Cj,2, Ck,1) is not consistent.  
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Fig. 1. A checkpoint and communication pattern. 

 

2.2 Z-paths and Z-cycles 

Netzer and Xu introduced the following notion of Z-paths and Z-cycles, and showed 
that a checkpoint Ci,x cannot be part of a consistent global checkpoint iff it is involved in 
a Z-cycle [16].  

Definition 2  A Z-path is a sequence of messages [m1, m2, …, mq] (q ≥ 1) such that, for 
each i, 1 ≤ i ≤ q − 1: receive(mi) ∈ Ik,s ∧ send(mi+1) ∈ Ik,t ∧ s ≤ t.  

 
If a Z-path [m1, m2, …, mq] satisfies the condition that Ci,x precedes send(m1) and 

receive(mq) precedes Cj,y in the same process, we say that this Z-path is from Ci,x to Cj,y. 
A Z-path from a local checkpoint Ci,x to the same local checkpoint Ci,x is called a Z-cycle. 
We say that it involves the local checkpoint Ci,x. 

Theorem 1  A local checkpoint Ci,x cannot be part of a consistent global checkpoint iff 
it is involved in a Z-cycle.  
 

For example, in Fig. 1, both message sequences [m5, m2] and [m5, m3] constitute 
Z-paths from Ck,1 to Ci,2. Moreover, according to Theorem 1, Ck,1 cannot be part of a con-
sistent global checkpoint because it is involved in the Z-cycle [m5, m4].  

Since Z-cycles are the cause of the domino effect, it is clear that any checkpointing 
protocol must eliminate all Z-cycles by forcing additional checkpoints to ensure dom-
ino-effect freedom. We say that all Z-cycles are broken. For instance, we can add a 
forced checkpoint before receiving m5 to break the only Z-cycle [m5, m4] to make the 
pattern in Fig. 1 domino-effect free since [m5, m4] is no longer a Z-path. Now a previ-
ously known characterization of consistent global checkpoints corresponding to Z-paths 
is described. This result has been stated and proved in [9] and [16].  

Theorem 2  A global checkpoint S is consistent iff there exist no two local checkpoints 
X and Y in S such that there is a Z-path from X to Y. 

We say that a Z-path is causal if the receiving event of each message (except for the 
last one) precedes the sending event of the next message in the sequence. A Z-path is 



ADAPTIVE COMMUNICATION-INDUCED CHECKPOINTING PROTOCOLS 889 

non-causal if it is not causal. A Z-path with only one message is trivially causal. For sim-
plicity, a causal Z-path is also called a causal path. As an example, the Z-path [m5, m3] in 
Fig. 1 is causal, and the Z-path [m5, m2] is non-causal. For the rest of this paper, we use 
the following notation: the first (last) message of a Z-path ζ is denoted by ζ.first (ζ.last). 
Given two Z-paths ζ1 and ζ2, if their concatenation is also a Z-path then we denote the 
concatenation as ζ1 ⋅ ζ2. 

3. DESIGN OF THE GENERAL PROTOCOL 

In this section, we begin to design a general adaptive checkpointing protocol with 
domino-effect freedom, which will make the last checkpoint of a process with timestamp 
not greater than nK, for some positive integer n, be part of a consistent global checkpoint. 
We call such a protocol GPK (General Protocol with the measure K). Applying Theorem 
1, GPK must prevent the last checkpoint of a process with timestamp not larger than nK 
from being involved in a Z-cycle. One approach to avoiding generating a Z-cycle is to 
have a checkpoint timestamping algorithm that guarantees the timestamps for check-
points always increase along a Z-path [8, 9]. We can generalize this concept to obtain 
the following design strategy of the protocol GPK. 

 
Design Strategy  Let the timestamp of a checkpoint C be denoted as C.t. For every pair 
of checkpoints Ci,x and Cj,y such that there is a Z-path from Ci,x to Cj,y, assure that Cj,y.t > 
lK where l = Ci,x.t / K. 
 

In section 5, we demonstrate that exploiting the foregoing strategy accompanied 
with the basic timestamp described in the following subsection can make the last check-
point of a process with timestamp not greater than nK be part of a consistent global 
checkpoint. 

3.1 Basic Timestamp Management 

Now we derive a new management of timestamps from the classical method [15]. 
We assume each process Pi has a local logical clock lci, which is managed in the follow-
ing way:  
 
• The variable lci is initialized to be 0.  
• Before taking a (basic or forced) checkpoint, Pi increments lci by 1 and assigns the new 

value to be the timestamp of the checkpoint.  
• Upon sending a message m, Pi assigns lci / K K as the timestamp of m (let m.t denote 

the timestamp of m).  
• Upon receiving a message m, if m.t > lci, Pi updates lci to m.t.  
 

Note that for the special case K = 1, the previous timestamp management is equiva-
lent to that in [15]. It can be easily verified that this basic timestamp management guar-
antees that for two local checkpoints Ci,x and Cj,y, if i = j and x < y or if there is a causal 
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path from Ci,x to Cj,y, the timestamps of the two checkpoints satisfy the design strategy. 
Below, we examine the case of non-causal paths. 

3.2 ZK-Cycles 

Before considering the general management of non-causal paths, we first examine a 
special case, ZK-cycles, which are defined as follows:  
 
Definition 3  A ZK-cycle [m1, m2, …, mq] is a Z-cycle composed of two causal paths 
such that for some positive integer n, message m1 is sent by process Pi after lci ≥ nK and 
message mq is received by process Pi before a local checkpoint A with A.t ≤ nK. 

Fig. 2 illustrates some examples of ZK-cycles. We show that ZK-cycles violate the 
design strategy in the following theorem.  

 
                         (a)                          (b) 

Fig. 2. Some examples of ZK-cycles. 

Theorem 3  A ZK-cycle Ζ has to be broken based on the design strategy.  

Proof: Suppose Ζ is the concatenation of two causal paths µ1 and µ2, two cases are con-
sidered.  
 
Case a. If Ζ is from a checkpoint X with X.t ≥ nK to a checkpoint Y with Y.t ≤ nK for 

some positive integer n (note that checkpoint X and checkpoint Y may be the 
same checkpoint), similar to the scenario of Fig. 2 (a), it obviously does not sat-
isfy the design strategy and must be broken;  

Case b. Otherwise, Ζ is from a checkpoint X with X.t < nK to a checkpoint Y with Y.t < 
nK. Checkpoint X and checkpoint Y may be the same checkpoint. According to 
the definition of ZK-cycles, message µ1.first is sent after lci ≥ nK. Now we repre-
sent the next checkpoint of X as next(X). For the sake of X.t < nK and the basic 
timestamping management, we can find a checkpoint W with W.t ≥ nK, and there 
is a causal path µ3 from W to next(X) with message µ3.last received by process Pi 
before send(µ1.first), as depicted in Fig. 2 (b). The Z-path µ3 ⋅ µ1 ⋅ µ2 violates the 
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design strategy. Therefore, a forced checkpoint has to be taken before the event 
of receive(µ1.last), and Ζ is also broken by this checkpoint. 

Hence, a ZK-cycle Ζ has to be broken based on the design strategy.            � 
From the previous theorem, we have that protocol GPK has to break every ZK-cycle 

by taking a forced checkpoint. 

3.3 Management of Non-Causal Paths 

Given the basic timestamp management, let us look at every Z-path in Figs. 3 and 4, 
which contains only two messages m1 and m2 with send(m2) hb

���

receive(m1). Cj,y is a local 
checkpoint taken by Pj before send(m1) and Ck,z is the first checkpoint of Pk taken after 
receive(m2). Similar to [9], in order to utilize the information that Pi has about the values 
of local clocks of other processes, for each k (1 ≤ k ≤ N), we denote by cli[k] the value of 
Pk’s local clock as known by Pi. Remark that Pi can obtain this information with a clas-
sical piggybacking technique. If k = i, then cli[i] = lci. For k ≠ i, the knowledge of Pk’s 
local clock by Pi is only an approximation such that cli[k] ≤ lck. To ensure that check-
point timestamps along non-causal Z-paths satisfy the design strategy, we perform a case 
analysis to examine whether to force a checkpoint in different scenarios. That is, we have 
to check if Ck,z.t > m1.t. Here, let the value of m1.t be lK. When Pi receives m1, two sce-
narios can occur. First, let us consider the scenario “m1.t > lci”. In this scenario we have 
lci < lK and thus m2.t < lK. In [9] the value of cli[k] is classified as two possible cases, 
cli[k] < Ck,z.t and cli[k] ≥ Ck,z.t. Now we also discuss these two cases for the value of 
cli[k].  

 
• The value of cli[k] has been brought to Pi by a causal path that started from Pk before 

Ck,z. This case is illustrated in Fig. 3. More precisely, cli[k] is brought to Pi by µ1 in Fig. 
3 (a) and by µ2 ⋅ [m1] in Fig. 3 (b). For such a case, we have that cli[k] is less than Ck,z.t, 
and so two subcases are considered. 

• If cli[k] ≥ lK, this means that Ck,z.t > lK. This subcase obviously satisfies the design 
strategy.  

• If cli[k] < lK, the timestamp of Ck,z may be less than lK since m2.t < lK, too. Hence a 
safe strategy is to take a forced checkpoint before delivering m1 so that the sequence 
[m1, m2] is no longer a Z-path. 

 
                        (a)                          (b) 

Fig. 3. The value of cli[k] < Ck,z.t. 
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• The other case is that the value of cli[k] has been brought to Pi by a causal path that 
started from Pk after Ck,z. This case is depicted in Fig. 4. More precisely, the relevant 
causal path is µ1 in Fig. 4 (a) and µ2 ⋅ [m1] in Fig. 4 (b). In this case, cli[k] is an upper 
bound of Ck,z.t. So, if cli[k] < lK, Ck,z.t is less than lK, and a forced checkpoint is nec-
essary for this condition. Hence we only need to consider the situation of cli[k] ≥ lK. 
There are two subcases to be examined. 

• Let us first consider the situation of Fig. 4 (a). If cli[k] ≥ lK, then because the Z-cycle µ1 
⋅ [m2] has not been broken, we can conclude that Ck,z.t > lK. Otherwise, if Ck,z.t ≤ lK, 
then µ1 ⋅ [m2] is a ZK-cycle, and has to be broken. This leads to a contradiction. 

• Now we examine the situation shown in Fig. 4 (b). Again if cli[k] ≥ lK, the Z-cycle µ2 ⋅ 
[m1, m2] will form a ZK-cycle when the statement “Ck,z.t ≤ lK” is true. This scenario has 
been broken by a forced checkpoint when checking the condition of ZK-cycles. Hence 
it is unnecessary to bother with it again. 

 
                         (a)                            (b) 

Fig. 4. The value of cli[k] ≥ Ck,z.t. 

From the previous discussion, we conclude that protocol GPK should, 

for “m1.t > lci” and if 
[ ]
[ ]

,

< ,
i

i

cl k lK

cl k lK

 ≥



 
do nothing.

direct a process to force a checkpoint.
    (1) 

Next, we proceed with the other scenario “m1.t ≤ lci”. In this scenario we have lci ≥ 
lK. Two possible cases need to be examined. But before that, a theorem will be proved.  
 
Theorem 4  For the scenario “m1.t ≤ lci”, if m2.t < lK, then Ck,z.t > lK.  
 
Proof: Since lci ≥ lK and m2.t < lK, there exists a message α with the property that α.t ≥ 
lK and receive(α) hb

���
receive(m1). Let the value of α.t be l′K. Before the event receive(α), 

the value of the local clock of Pi is less than l′K. Obviously l′ ≥ l. At that moment, the 
value of the local clock lci is consequently less than l′K. So upon receiving α, the time-
stamp of α is larger than lci at that instant. Since there is no forced checkpoint taken be-
fore the event receive(α), according to the discussion of the scenario of m1.t > lci, we 
have cl′i [k] ≥ l′K, where cl′i [k] is the value of the local clock of Pk known by Pi at that 
instant. And if cl′i [k] < Ck,z.t, we know that Ck,z.t > l′K. If cl′i [k] ≥ Ck,z.t, there is a ZK-cycle 
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formed when Ck,z.t ≤ l′K. Hence for both cases, Ck,z.t > l′K, and thus we can conclude that 
the argument “Ck,z.t > lK” is true.                                           � 

 
Now we discuss the two possible cases as follows: 

 
• If m2.t ≥ lK, then Ck,z.t > lK. This obviously satisfies the design strategy. 
• If m2.t < lK, by applying Theorem 4, the timestamp of Ck,z is larger than lK. Hence no 

forced checkpoint is needed.  

From the foregoing discussion, we conclude that protocol GPK should,  

for “m1.t ≤ lci”, do nothing.                                           (2) 

From Eqs. (1) and (2), we know that cli[k] only has to be compared with lK, where l 
is 0, 1, 2, …. Hence it is sufficient to consider CLi[k], where CLi[k] = cli [k] / K K. Note 
that by applying the basic timestamp management, we have CLi[k] ≤ lci. In the following 
section, we describe how to use piggybacked information to implement protocol GPK 
and derive a family of checkpointing protocols from it. 

4. IMPLEMENTATION OF THE GENERAL PROTOCOL 

To begin, we discuss how to detect ZK-cycles. As in [9], we need an array ckpti of 
size N, where ckpti[k] = the number of checkpoints taken by Pk to Pi’s knowledge. This 
vector clock is managed in the usual way [17]. When Pi sends a message m, Pi appends 
to m the current value of ckpti. Let m.ckpt denote this value. Note that, lci and ckpti[i] 
may be different. Variable ckpti[i] is used to generate the indices associated with the 
checkpoints taken by Pi; this variable takes on the successive values 0, 1, 2, …. On the 
other hand, variable lci is used to timestamp checkpoints taken by Pi; due to clock up-
dates, this variable can skip some integer values. Both variables can only increase. Sec-
ond, we also need the boolean array takeni used in [9] to cooperate with ckpti to detect 
ZK-cycles. However, it is managed in a different way. Also, every process has to preserve 
one more boolean array tci of size N. Variables takeni and tci are managed in the follow-
ing way: 
 
• Variables takeni and tci are initialized to be false.  
• When Pi takes a checkpoint, for any k ≠ i, let tci[k] = true (tci[i] always remains false).  
• Whenever the local clock lci becomes lK where l is some positive integer, for any k ≠ i, 

takeni[k] is set to true if tci[k] is true (takeni[i] always remains false, too).  
• When Pi sends a message m, Pi appends to m the current value of takeni (let m.taken be 

this value).  
• When Pi receives m, Pi updates takeni in the following way: 

For any k ≠ i, 
• if m.ckpt[k] < ckpti[k] then skip m.taken[k];  
• if m.ckpt[k] > ckpti[k] then if m.taken[k] = true, we let takeni[k] = true; else both 

takeni[k] and tci[k] are set to false;  
• if m.ckpt[k] = ckpti[k] then takeni[k] = takeni[k] ∨ m.taken[k].  
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With these data structures, the condition to detect ZK-cycles can be expressed as 

C0 ≡ (m1.ckpt[i] = ckpti[i]) ∧ m1.taken[i]. 

The first part of this condition states that there is a causal path starting after some 
checkpoint X at Pi and arriving before the next checkpoint of X, while the second part 
indicates this causal path includes a checkpoint with the timestamp closest to lK and the 
execution point when lci becomes lK. Note that for the special case of K = 1, the Z1-cycle 
is just a Z-cycle composed of two causal paths. It can easily be verified that to detect 
such a Z-cycle, variable tci is no longer necessary and the management of variable takeni 
can be simplified in the same way as managed in [9]. 

Now we discuss how to use piggybacked information to express Eqs. (1) and (2). 
Similarly, we exploit the boolean array greateri used in [9]. But it has a more generalized 
meaning: greateri[k] = (Vi > CLi[k]), where Vi denotes the value of lci / K K for the sake 
of neatness. This variable greateri is managed in the following way:  
 
• For any k ≠ i, greateri[k] is initialized to be true (greateri[i] always remains false).  
• When Pi sends a message m, Pi appends to m the current value of greateri (let 

m.greater be this value).  
• When Pi receives m, Pi updates greateri in the following way: 

For any k ≠ i,  
• if m.t < Vi then skip m.greater[k];  
• if m.t > Vi then let greateri[k] = m.greater[k];  
• if m.t = Vi then let greateri[k] = greateri[k] ∧ m.greater[k].  

 
According to the management of variable greateri, the statement “m.greater is true” 

indicates that the new CLi[k] brought by message m is less than m.t. Note that the value 
of m.t equals the value of Vj at the time message m was sent by Pj. Moreover, the condi-
tion “m.t > lci” can deduce that the original CLi[k] preserved by process Pi is less than 
m.t because CLi[k] ≤ lci. Hence Eqs. (1) and (2) can be implemented by the condition  

C1 ≡ (∃k : sent_toi[k] ∧ m1.greater[k]) ∧ m1.t > lci, 

where sent_toi[k] is a boolean array used in [9] and is managed by process Pi in order to 
know whether Pi has sent a message to Pk since its last checkpoint. Then GPK is based 
on condition C1 in conjunction with C0 as follows: 

C1 ∧ C0 ≡ ((∃k : sent_toi[k] ∧ m1.greater[k]) ∧ m1.t > lci) ∨ ((m.ckpt[i] = ckpti[i]) ∧ 
m.taken[i]). 

  
Here we use the term “m” instead of the term “m1” for more generality. 

In [9] a family of checkpointing protocols was proposed. Here we also show that 
our proposed general protocol can give rise to a family of adaptive checkpointing proto-
cols. These protocols are the generalization of those in [9]. First, a new protocol was ob-
tained by discarding condition C0 and variable greateri. This new protocol is named 
FVASK (Fixed Vi After Send with the measure K), which is based on the condition 
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C2 ≡ ∃k : sent_toi[k] ∧ m1.t > lci. 

Next, we show that FVASK is a viable adaptive checkpointing protocol with dom-
ino-effect freedom by the following theorem.  
 
Theorem 5  The protocol FVASK satisfies the design strategy. 
 
Proof: Consider the situation of the Z-path [m1, m2] depicted in Fig. 3. If m1.t > lci, a 
forced checkpoint will be taken before receiving m1, and thus [m1, m2] is no longer a 
Z-path. Therefore we only need to consider the scenario “m1.t ≤ lci”. There are two pos-
sible cases:  
 
• If m2.t ≥ m1.t, this satisfies the design strategy. 
• If m2.t < m1.t, since lci ≥ m1.t, Pi must receive a message α with α.t ≥ m1.t before re-

ceive(m1). Also, upon receiving α, the value of the local clock at that moment is less 
than α.t. This means that condition C2 is incurred and a forced checkpoint needs to be 
taken before receive(α). This leads to a contradiction. 

 
From the previous discussion, we know that FVASK satisfies the design strategy.� 
Another protocol is derived by further weakening condition C2. We eliminate the 

array sent_toi and get the condition  

C3 ≡ m.t > lci. 

This protocol is denoted as FVIK (Fixed Vi Interval with the measure K), and is a 
variant of the lazy coordination addressed in [14]. So the protocol GPK can provide a 
framework that unifies previous works in [7-9, 14]. 

5. ANALYSES AND COMPARISONS 

5.1 Determination of Consistent Global Checkpoints 

In [9] Helary et al. found an interesting property for the special case K = 1 of the 
timestamp mechanism of the design strategy. It allows an easy timestamp-based deter-
mination of consistent global checkpoints. Now we show that this property is also valid 
in this mechanism for any positive integer K.  

 
Theorem 6  Consider a checkpoint and communication pattern satisfying the timestamp 
mechanism of the design strategy. For an integer l ≥ 0, let the global checkpoint CG = 
{C1,x1

, …, CN,x
N
}, where for any i, Ci,x

i
 is the last checkpoint of Pi with timestamp not lar-

ger than lK. Then CG is consistent.  
 
Proof: By contradiction, suppose CG is not consistent. By Theorem 2, there must exist 
two local checkpoints X and Y in CG such that there is a Z-path ζ1 from X to Y. Let next(X) 
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denote the next checkpoint of X. According to the assumption that the timestamp of 
every local checkpoint in CG is less than or equal to lK, we have that Y.t ≤ lK. Also from 
the assumption of CG, we know that next(X).t > lK. Based on Y.t ≤ lK and the design 
strategy, we have X.t < lK. From the basic timestamp management, since X.t < lK and 
next(X).t > lK, we can conclude that the timestamp of next(X) is obtained from a local 
checkpoint W that belongs to a process different from the one that has taken X and pos-
sesses the property W.t ≥ lK. So, there is a ζ2 from W to next(X), as shown in Fig. 5. And 
then there is also a Z-path ζ2 ⋅ ζ1 from W to Y. From the design strategy and W.t ≥ lK, we 
get Y.t > lK. This leads to a contradiction.                                    � 
 

This result shows that our adaptive checkpointing protocols can ensure progression 
of the recovery line, and also provide a flexible tradeoff between the cost of checkpoint-
ing coordination and the rollback distance. 

 
Fig. 5. The scenario of Theorem 6. 

5.2 Overhead Analyses 

Since the checkpoint overhead of checkpointing protocols depends on the run-time 
dynamic checkpoint and communication patterns, it is important to analyze and estimate 
the potential extra overhead from forced checkpoints. Here we first show that the idea of 
adaptive checkpoint coordination is viable by giving an overhead analysis. Namely, we 
show that for our proposed adaptive checkpointing protocols, the larger measure K is, the 
smaller the number of forced checkpoints. Because the checkpoint-inducing condition of 
an adaptive checkpointing protocol with measure K1 does not necessarily imply the con-
dition of the same type of protocol with measure K2, even though K1 < K2 (e.g., the con-
dition of FVI2 does not imply that of FVI3), we adopt the worst-case analysis scheme 
proposed in [14] to estimate overhead between different values of K. Likewise, the ap-
proach to worst-case analysis consists of two steps. First, given any basic checkpoint 
pattern, we construct the worst-case checkpoint and communication pattern. Second, 
given any system with N processes and measure K, we derive the worst-case induction 
ratio, i.e. #forced checkpoints/#basic checkpoints, as a function of N and K by consider-
ing the worst-case checkpoint and communication pattern. Because our checkpointing 
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protocols are different from the lazy checkpoint coordination scheme of [14] and are 
more general, we must construct the worst-case pattern in a different way. Given any 
basic checkpoint pattern and measure K, we construct the worst-case checkpoint and 
communication pattern pato as below. 

Let C*,lK denote the earliest checkpoint with a timestamp equivalent to lK among all 
processes where l ≥ 1. If C*,lK = Ci,lK, then for any j ≠ i, after Ci,lK process Pi sends mes-
sage mlj to process Pj and before receiving mlj, Pj has sent a message ml′j to Pi. The event 
receive(ml′j) in Pi occurred before checkpoint Ci,lK. Thus the Z-path [mlj, ml′j] forms a 
Z-cycle. Since this type of Z-cycle has to be broken, a forced checkpoint is taken before 
receiving message mlj. Fig. 6 shows an example of the worst-case pattern pato with K = 2. 

 
Fig. 6. An example of the worst-case pattern with K = 2. 

 
Now we explain why pattern pato is the worst case and derive the upper-bound of 

the induction ratio from pato. By the construction of pato, since the process possessing 
checkpoint C*,lK sends a message to every other process which has a value of the local 
clock less than lK, the sent message will make every other process update its local clock 
as lK. Hence pattern pato always has the earliest C*,lK among all checkpoint and commu-
nication patterns, given the basic checkpoint pattern. Since each C*,lK in pato also induced 
the largest possible number (N − 1) of forced checkpoints, the total number of forced 
checkpoints in pato must be the largest, and so we can conclude that given a basic check-
point pattern, pattern pato is the worst-case checkpoint and communication pattern re-
sulting in the largest induction ratio. Moreover, because the induction of any forced 
checkpoint cannot occur until checkpoint C*,lK is taken and the process having C*,lK must 
take K consecutive basic checkpoints by itself in order to reach C*,lK, we know that at 
least K basic checkpoints are needed to induce at most (N − 1) forced checkpoints. So the 
upper-bound of the induction ratio R is, 

  1NR
K
−≤  

From the foregoing equation, we can conclude that with larger measure K, the num-
ber of forced checkpoints is smaller. 
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5.3 Related Work 

Communication-induced checkpointing protocols can be classified into two distinct 
categories, index-based and model-based [4]. An index-based protocol associates local 
checkpoints with sequence numbers similar to Lamport’s logical clocks [15] in such a 
way that checkpoints with the same sequence numbers are forced to be consistent. A 
model-based protocol does not use a timestamping function, but prevents the formation 
of special checkpoint and communication patterns in the execution. By comparison, in-
dex-based protocols often have fewer forced checkpoints and less control information 
than model-based ones. Among existing checkpointing protocols with domino-effect 
freedom, protocols introduced in [7-11] belong to the index-based category and are based 
on three kinds of indexing strategies. In [18] these strategies are called normal indexing 
[7-9], lazy indexing [11] and lazier indexing [10]. The latter two can be regarded as op-
timizations of the first one. On the contrary, protocols proposed in [12, 13] belong to 
model-based category.  

In [19] several simulation experiments were conducted to compare the performance 
of some index-based and model-based protocols with domino-effect freedom. The au-
thors found that if the communication patterns under study mimic a periodic broadcast, 
model-based protocols appears to be “eager” in taking forced checkpoints to prevent the 
formation of Z-cycles compared to index-based ones. In [18] a few theoretical results on 
performance comparisons of some protocols with domino-effect freedom were intro-
duced. The discussions in [18] can be exploited to explain the foregoing simulation result 
more than those described in [19]. In [19] each process running the simulation has the 
same rate of taking basic checkpoints such that the sequence number of every process is 
almost equivalent at the same instant. Also, those parallel applications under study use a 
common iterative structure to solve a computation intensive problem in which processes 
change results and then resume. Thus a process often sends a message to some process 
with a larger or equivalent sequence number, and has received a message from another 
process in the previous interval. This leads to the checkpoint-inducing condition of a 
model-based protocol occurring more frequently than that of an index-based one [18]. On 
the contrary, if a process usually sends a message to another process with a sequence 
number not larger than its own, then model-based protocols outperform index-based ones 
for such a pattern [18]. 

6. CONCLUSIONS 

Since extra forced checkpoints are the main factor of run-time overhead, it is desir-
able to have as small a number of forced checkpoints as possible in practical applications. 
In this paper, we have presented a family of adaptive checkpointing protocols, for which 
we can reduce the number of forced checkpoints by defining a larger value of the meas-
ure K according to our requirements. Moreover, the proposed GPK protocol provides a 
framework that unifies previous works [7-9, 14]. Most existing checkpointing protocols 
that solve the problem of domino-effect freedom can be viewed as a particular instance 
of it. Finally, we showed how to determine consistent global checkpoints for this family 
of checkpointing protocols, and also gave an overhead analysis to demonstrate that the 
idea of adaptive checkpoint coordination is viable. 
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